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Abstract: Let R be a commutative principal ideal ring with unity. In this paper, we classify when the intersection
graphs of ideals of a ring R G(R), is a divisor graph. We prove that the intersection graphs of ideals of a ring R
G(R), is a divisor graph if and only if R is a local ring or it is a product of two local rings with each of them has
one chain of ideals. We also prove that G(R), is a divisor graph if it is a product of two local rings one of them
has at most two non-trivial ideals with empty intersection.
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1 Introduction
In this paper, all rings are be a commutative principal
ideal ring with unity and all graphs are permused to
be simple.

Let S be a nonempty set of positive integers and let
GS be the graph whose vertices are the element of S.
Which is two distinct vertices a, b are adjacent if and
only if a divides b or b divides a. A graph G is called
a divisor graph if there is a set of positive integers S
such that G ∼= GS . For S= {1, 2, ..., n}, the length
of longest path in GS is studied in [5, 6, 7]. In [4],
divisor graph are investigated. Some results are listed
below:

1. No divisor graph contains an induced odd cycle
of length 5 or more (proposition 2.1).

2. An induced subgraph of a divisor graph is a divi-
sor graph (proposition 2.2).

3. Complete graphs and bipartite graphs are divisor
graphs (proposition 2.5 and Theorem, 2.7).

4. A graph G is a divisor graph if and only if there
is an orientation D of G in which every vertex is
transmitter, receiver, or transitive (Theorem 3.1).

Divisor graphs are also studied in [2, 3].
Another concept of the undirected simple graph is

the concept of intersection graphs of ideals of ringsR,
denoted by G(R) which is vertices are in one-to-one
correspondence with all nontrivial ideals ofR and two
distinct vertices are joined by an edge if and only if the
corresponding ideals ofR have a nontrivial (nonzero)
intersection. Evidently the set of vertices is empty for
simple rings. In this case G(R) is an empty graph.It
is shown that for aye simple graph is an intersection
graph, ([8]).
It is exciting to study the intersection graphs G when

the members of F have an algebraic structure. And
Bosak [9] in 1964 studied graphs of semigroups. And
after that Cskny and Pollk [10] in 1969 studied the
intersection graphs of subgroups of a finite group.
Zelinka [11] in 1975 proceeded the work on intersec-
tion graphs of nontrivial subgroups of finite abelian
groups.

Chakrabarty et al. [4] studied intersection graphs
of ideals of rings. The intersection graph of ideals of
a ring R, denoted by G(R), is the undirected simple
graph (without loops and multiple edges) whose ver-
tices are in one-to-one correspondence with all non-
trivial left ideals of R and two distinct vertices are
joined by an edge if and only if the corresponding
left ideals of R have a nontrivial (nonzero) intersec-
tion. Clearly the set of vertices is empty for left sim-
ple rings. In this case we refer G(R) as empty graph.
The idea behind presenting the intersection, G(R), of
a ring R is to study and research the relationship be-
tween algebraic properties of the ringR and the graph
theoretic properties of the graph G(R).

Let R be a ring. By I and I∗ we mean the set of
all ideals of R and the set of all nontrivial ideals of R
respectively. A ring R is local if it has a unique max-
imal ideal.

Let G be a graph wich the vertex set is V(G). The
complete graph of ordern is denoted byKn, is a graph
whosen vertices inwhich any two distinct vertices are
adjacent. A star graph is a graph with a vertex adja-
cent to all other vertices and has no other edges. Re-
call that a graph G is called connected graph if there
is a path between every two distinct vertices. For ev-
ery pair of distinct vertices x and y of G, let d(x, y)
be the length of the shortest path from x to y and if
there is no such a path we define d(x, y) = ∞. The
diameter of G, diam(G), is the supremum of the set
{d(x, y) : x and y are distinct vertices of G}.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.44 Manal Al-Labadi

E-ISSN: 2224-2880 430 Volume 19, 2020



In our investigation, we start with Lemma.
Lemma 1: A graph that includes the following in-
duced subgraph (Figure 1) is not a divisor graph.

Figure 1: A graph which is not a divisor graph.

Proof: Let D be an orientation of the above graph
in which every vertex is a receiver, a transmitter or
transitive. We may assume without loss of generality
that a → e in D. Thus, we will have the following
digraph (Figure 2):

Figure 2: A graph which is not a divisor graph.

To entirety the orientation we must have either
f → c or c → f . Both cases are infeasible because
in either case the vertex c is neither a receiver nor a
transmitter nor transitive.

The following pan out (Figure 3) which was given
in [4] as example of a graphwhich is not divisor graph.

Figure 3: A graph which is not a divisor graph.

2 When G(R) is a divisor graph
In our investigation, we begin with local ring.
Theorem 1: Let R be a local ring. Then G(R) is a
divisor graph.
Proof: Let M be a maximal ideal of R since R is
principal ideal ring thenM = (x) is a principal ideal.
Thus every ideal is a power ofM so, R has one chain
of ideals of which G(R) is a complete graph. There-
fore G(R) is a divisor graph.

By using Figure 1, we deduce the following The-
orem.
Theorem 2: If R is a product of 3 non-trivial rings,
then G(R) is not a divisor graph.

Proof: Assume that R ∼= R1 × R2 × R3. Then we
have the following induced subgraph ofG(R) (Figure
1). Let a = R1 × {0} × {0}, d = R1 × {0} × R3,
b = {0} × {0} × R3, e = {0} × R2 × R3, c =
{0}×R2×{0} and f = R1×R2×{0}. ThenG(R)
is not a divisor graph.

By Theorem 1 and 2 we need to consider the prod-
uct of two local rings case only to finish our investi-
gation. Our discussion will be based on the fact that
the diameters of intersection graph of ideals of rings
can not exceed 2 (see [1]). Note that if R ∼= R1 × R2

is a product of two fields, then diam(R) = ∞ since
G(R) has only two non-trivial ideals {0} × R2 and
R1×{0} which are non-adjacent. ThenG(R) is a di-
visor graph.
Theorem 3: LetR ∼= R1×R2 such thatR1 orR2 has
three distinct ideals and intersection between any of
them is empty. Then R is not a divisor graph.
Proof: Without loss of generality assume that R1 has
three distinct non-trivial ideals say I∗1 , I∗2 and I∗3 such
that I∗1 ∩ I∗2 = {0}, I∗1 ∩ I∗3 = {0} and I∗2 ∩ I∗3 =
{0}. Then we have the following induced subgraph
of G(R) (Figure 3). Let a = I∗3 × R2, c = I∗2 × R2,
b = I∗1 × R2, e = I∗3 × {0}, d = I∗2 × {0} and
f = I∗1 × {0}. Then G(R) is not a divisor graph.
Theorem 4: Let R ∼= R1 × R2 such that R1 and R2

each of them has two distinct ideals. Then R is not a
divisor graph.
Proof: Assume that R ∼= R1 × R2 each of them has
two distinct ideals say I∗1 , I∗2 with I∗1 ∩ I∗2 = {0} and
J∗
1 , J∗

2 with J∗
1 ∩ J∗

2 = {0} respectively. Then we
have the following induced subgraph of G(R) (Fig-
ure 3). Let a = R1 ×{0}, c = I∗2 × J∗

2 , b = I∗2 × J∗
1 ,

e = I∗1 ×{0}, d = {0}×J∗
2 and f = {0}×J∗

1 . Then
G(R) is not a divisor graph.

If G is a divisor graph, then there is one -to-one
function f : V (G) → N such that v is adjacent to
u in G if and only if f(u) divides f(v) or f(v) di-
vides f(u). This function is called a divisor labeling
of G, see [6]. We use labeling functions in the proofs
of Theorem 5, 6 and 7.
Theorem 5: Let R ∼= R1 × R2 such that R1 and R2

each of them has a unique minimal ideal. Then G(R)
is a divisor graph.
Proof: Let {Ii; i = 1, ..., n} be the set of all non-
trivial ideals in R1 and {Ji; i = 1, ..., m} be the set
of all non-trivial ideals in R2. Then the set of all non-
trivial ideals in R are {R1 × {0}, {0} × R2, R1 ×
M2, M1 ×R2, I

∗
i × {0}, {0} × J∗

i , I
∗
i × J∗

i , R1 ×
J∗
i , I

∗
i ×R2, M1 × J∗

i , I
∗
i ×M2, M1 ×{0}, {0}×

M2, M1×M2}. LetX be the set of all non-trivial ide-
als of the form {R1 ×M2, I

∗
i ×R2, R1 × J∗

i , M1 ×
R2, I∗i × M2, M1 × J∗

i , M1 × M2}. Let j =
{1, ...., k} where k is the number of ideal in X and
l = {1, 2}. Then define the function f : V (G) → N
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by

f(x× y) =



2j , x× y ∈ X
2k × 5l , x× y ∈ {R1 × {0}, M1 × {0}}

2k × 52+i , x× y = {I∗i × {0}}
2k × 3l , x× y ∈ {{0} × R2, {0} ×M2}

2k × 3i+2 , x× y = {{0} × J∗
i }

.

Then f is a one to one function such that
(x × y) ∩ (α × β) ̸= {0} if and only if f(x × y)
divides f(α × β) or f(α × β) divides f(x × y).
Hence G(R) is a divisor graph.
Theorem 6: Let R be a product of two local rings,
R ∼= R1 × R2 with M1 and M2 are two maximal
ideals in R1 and R2 respectively. Then G(R) is a
divisor graph.
Proof: We have the following cases:

• Case 1: If R1 has two non-trivial distinct ideals
with empty intersection andR2 has a unique non-
trivial ideal.
In this case let I∗1 , I∗2 are two non-trivial ideals
in R1 such that I∗1 ∩ I∗2 = {0} and J∗ is a non-
trivial ideal in R2. Then the set of all ideals are
{R1×M2, M1×R2, M1×M2, R1×{0}, {0}×
R2, I∗1 × M2, I∗2 × M2, M1 × {0}, {0} ×
M2, I

∗
1×{0}, I∗2×{0}, R1×J∗, I∗1×J∗, I∗2×

J∗, {0} × J∗, M1 × J∗}. Let X be the set of
non-trivial ideals of the form {R1 × M2, I∗1 ×
R2, I

∗
2 ×R2, R1×J∗, M1×R2, I

∗
1 ×M2, I

∗
2 ×

M2, M1 × J∗, M1 ×M2, I
∗
1 × J∗, I∗2 × J∗}.

Let j = {1, ...., 8}, l = {1, 2}. Then define the
function f : V (G) → N by

f(x×y) =



2j , x× y ∈ X
211 × 5l × 7l , x× y ∈ {R1 × {0}, M1 × {0}}

211 × 5 , x× y = {I∗1 × {0}}
211 × 7 , x× y = {I∗2 × {0}}
211 × 3l , x× y ∈ {{0} × R2, {0} ×M2}
211 × 33 , x× y = {{0} × J∗}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

• Case 2: If R1 has two non-trivial distinct ideals
with empty intersection andR2 has no non-trivial
ideal.
In this case let I∗1 , I∗2 are two non-trivial ideals
in R1 such that I∗1 ∩ I∗2 = {0}. Then the set of
all ideals in R are {R1 ×M2, M1 × R2, M1 ×
M2, R1 × {0}, {0} × R2, I∗1 × M2, I∗2 ×
M2, M1 × {0}, {0} × M2, I∗1 × {0}, I∗2 ×
{0}, I∗1 × R2, I∗2 × R2}. Let X be the set of
all non-trivial ideal of the form {R1 ×M2, I

∗
1 ×

R2, I
∗
2×R2, M1×R2, I

∗
1×M2, I

∗
2×M2, M1×

M2}. Let j = {1, ...., 7} and l = {1, 2}. Then

define the function f : V (G) → N by

f(x×y) =


2j , x× y ∈ X

27 × 5l × 7l , x× y ∈ {R1 × {0}, M1 × {0}}
27 × 5 , x× y = {I∗1 × {0}}
27 × 7 , x× y = {I∗2 × {0}}
27 × 3l , x× y ∈ {{0} × R2, {0} ×M2}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

• Case 3: If R1 and R2 each of them has a unique
non-trivial ideal.
In this case let I∗ is a non-trivial ideal in R1

and J∗ is a non-trivial ideal in R2. Then the set
of all non-trivial ideals are {R1 × M2, M1 ×
R2, M1 × M2, R1 × {0}, {0} × R2, I∗ ×
M2, M1 × {0}, {0} × M2, I∗ × {0}, R1 ×
J∗, I∗ × J∗, {0} × J∗, M1 × J∗, I∗ × J∗}.
Let X be the set of non-trivial ideal of the form
{R1 ×M2, I

∗ ×R2, R1 × J∗, M1 ×R2, I
∗ ×

M2, M1 × J∗, M1 ×M2}. Let j = {1, ...., 8}
and l = {1, 2}. Then define the function f :
V (G) → N by

f(x×y) =


2j , x× y ∈ X

28 × 5l × 7 , x× y ∈ {R1 × {0}, M1 × {0}}
28 × 5 , x× y = {I∗ × {0}}
28 × 3l , x× y ∈ {{0} × R2, {0} ×M2}
28 × 33 , x× y = {{0} × J∗}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

• Case 4: If R is a product of two local rings with
no non-trivial ideal different than maximal ideal
for each R1 and R2, then the set of all ideals in
R are {R1 × {0}, M1 × R2, R1 × M2, {0} ×
R2, M1 × M2, M1 × {0}, {0} × M2}. Let X
be the set of non-trivial ideal of the form {R1 ×
M2, M1 × R2, M1 ×M2}. Let j = {1, 2, 3}
and l = {1, 2}. Then define the function f :
V (G) → N by

f(x× y) =


2j , x× y ∈ X

23 × 5l , x× y ∈ {R1 × {0}, M1 × {0}}
23 × 3l , x× y ∈ {{0} × R2, {0} ×M2}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

Theorem 7: LetR be a product of two local rings one
of them is a field, assume that R ∼= R1 × R2 without
loss of generality let R1 is a local ring with M1 is a
maximal ideal in R1 and R2 is a field. Then G(R) is
a divisor graph.
Proof:
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• Case 1: If R1 has two non-trivial distinct ideals
with empty intersection.
In this case let I∗1 , I∗2 are two non-trivial ideals in
R1 such that I∗1 ∩ I∗2 = {0}. Then the set of all
ideals are {M1×R2, R1×{0}, {0}×R2, M1×
{0}, I∗1×{0}, I∗2×{0}, I∗1×R2, I

∗
2×R2}. LetX

be the set of all ideal of the form {M1×R2, I
∗
1 ×

R2, I
∗
2×R2}. Let j = {1, 2, 3} and l = {1, 2}.

Then define the function f : V (G) → N by

f(x×y) =


2j , x× y ∈ X

23 × 5l × 7l , x× y ∈ {R1 × {0}, M1 × {0}}
23 × 5 , x× y = {I∗1 × {0}}
23 × 7 , x× y = {I∗2 × {0}}
23 × 3 , x× y ∈ {{0} × R2}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

• Case 2: If R1 has a unique non-trivial ideal.
Let I∗ is a non-trivial ideal in R1. Then the set
of all ideals are {M1 × R2, M1 × {0}, R1 ×
{0}, {0} × R2, I∗ × R2, I∗ × {0}}. Let l =
{1, 2}, define the function f : V (G) → N by

f(x× y) =


2l , x× y ∈ {M1 × R2, I

∗ × R2}
22 × 5l , x× y ∈ {R1 × {0}, M1 × {0}}
22 × 53 , x× y = {I∗ × {0}}
27 × 3 , x× y ∈ {{0} × R2}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

• Case 3: If R1 is a local rings with no non-trivial
ideal different than maximal ideal. Then the set
of all ideals inR are {R1×{0}, M1×R2, {0}×
R2, M1 ×{0}}. Let l = {1, 2} define the func-
tion f : V (G) → N by

f(x× y) =


2 , x× y ∈ {M1 × R2}

2× 5l , x× y ∈ {R1 × {0}, M1 × {0}}
2× 3 , x× y ∈ {{0} × R2}

.

Then f is a one to one function such that (x×y)∩
(α × β) ̸= {0} if and only if f(x × y) divides
f(α × β) or f(α × β) divides f(x × y). Hence
G(R) is a divisor graph.

3 Conclusion and questions
In this paper, we determined when G(R) is a divisor
graph and we sum up in the following theorem.
Theorem 8: Let R be a commutative principal ideal
ring with unity. Then G(R) is a divisor graph if it is
a local ring or is product of two local rings with each
of them has one chain of ideals or is product of two
local rings one of them has at most two non-trivial

ideals with empty intersection.
One can ask the following questions:
(1) Can we generalize the results of this article to
the ring is Noetherian or Artinian?
(2) When the complement G(R) is a divisor
graph?
(3)When Intersection Ideals of Graphs of Rings
are Eulerian graph ?

and [13].
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